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ABSTRACT

This thesis presents an implementation of
mul tiprogramming and process management functions for the
security kernel of a distriduted multiprocessor system. The
implementation is based on a family of operating systems
desiened to provide controlled access in a microcomputer
network to data bases containing multiple levels of
sensitive information.

Multiprogramming improves system efficiency and creates
a virtual enviromment which frees the remainder of the
operating system from a dependence on processor
configuration. Processor management coordirates the
asynchronous interaction of system processes.

This implementation describes a processor multiplexine
technique for a distributed kernel and presents a virtual
interrupt mechanism. Its structure is loop free to permit
future expansion into more complex members of the desigen

family.




TABLE OF CONTENTS

II INTHODUCTIONI.............‘.O......»...........I..'..ll
A. BAcKGROUND........O................"....l.l‘...0.14
B. coPPUTER SECURITY. ® 9 0 08000 00000 SO OO NSO e .000015

1. ReferenCe Monitor...o.oo.t...-o.o.00.'.00...16

T TR
- P A LB o e dhe U
< it e, L Pt MR e !

2, SecuPity POliCYeeveecocsccersconcsncensccansel?

a. Non-discretionary PolicCyececesececcaceecalB

b. UDiscretionary PoliCyeeeccececoccesacssesll

2. Security Kernel Design.ccecceececrcocceccecsessld

C. SCOPE OF TEESIS:cceceveaccssooasssssssesssncnnessld

iI. OPERATING SYSTEM DESIGN CONCEPTSececccecossacssaeessll
A. DESIGN PEILOSOFHT ...covvennsscoccsscccnsoccsonssall 1

B. GENEZRAL DESIGN GOALSeeicecescceccccssonsscnsccssld

1. Logical StrucCtUre.csicccecsccssesonsccscasaeeecld
2. TFault ToleranCeececccesccscsccscsvccscsssnesld
3. Efficlency.ceccecccecaccoscssscsscsscsssssnosceclds
C. SPECIFIC DESIGN GOALS.ccesccecccaccccccsesncecsel
1. Internal Security..ccocceccccceconccsoneeces2?
2. Confisuration Independenc@.icccscccccecseccesl?
3. Subd-setting Capadility.cccecececcsccencecees?
D. DESIGN REQUIREMENTS.c.ceccovecccscsccvcscenssssss28
1. TFunctional Requirements.c.ccccececcccccesss 8

a. Process OrganizatioNecceccccscsccescasssell




/"‘
b. Memory SegmentatioN.ccccecocecsccscnssesdl

, C. ADStracCtiON.cccccccencoscsscscsccscscsssdl
“ 4, Resource VArtualizatloN.....eeeeeeeessss33
2. Bardware RequiremenltS...ccccececscccoccssscectd
a. Processor Virtvalization..c.cooceceeceeedd

b. Memory VirtualizatioD.ceececeococcccoosedd

c. Protection Domains.....ccceceeevececcess3®

Et HARD"ARE SELECTION.00.'.o.o.’......o.'..oo.-.loss

L s e e s Aot RS AR i et i i e < ina oo adallh s AR

1. Z2IL0G Z8CC€1.ccecccecocccccncsscscscsssansosal?
a. Memory SegmentatioNecccceccescecccncesed? 3
P. MultiprogrammMing@.eccecceccecccvncsscsccsssct
c. T™wo~domain OperationS.ccecececoccccesssdd
2. Selection RatioNale.eccesocccsscsccoccasneseld
Fo SUMMARY..veecocececcasoscscasscccoscsncsscccenscdd
III. SECURITY KERNEL DESIGN.ceccveccessccsccasccencsaneckl
A. PROCESS TIEW.eeuooeeosonacncsssssasanssoonossssdl i
1. SUDPErvisSOrl ProCesS@S.ccccssscocaccsccnssessdl
2. Kernel ProcesSSeS.ccscccccccccscsossescacsead?
3. Host Environment...cccceoceccosccccvscacssesdd
B. VIRTUAL MACEINE VIEBW .ceeeoecsccecocsocssascncossedd
1. Inner Traffic Controller Module.....cccc.ccbéd
2. Traffic Controller Module.cecceccosseccaccedd?

a’ Scheduling........................Q.'.I47

3. Non-Tiscretionary Security Module.ceecessss51 : ’

;

%
%
&




4.
f 1

11 5.
6.

s - vA A

RSN P S i A S S el
i oo e . ,

1.
2.

Event Manaser Module..'.....'...l..'.......51
Segment Manager MOdUlC.cceccocccctansccssesd

Gatekeeper Module'.....l.'........l.l.....lsz

C. REVIEW..ooesosesccovesscsccscccccscocconcnssssedd
Iv. IMPLEMENTATION ceccecccsvosccsccscoccncccsccccancaesdd
A. DEVELOPMENTAL SUPPORT cccceceveccccccacscnceceesld
B. INNER TRAFFIC CONTROLLER.cecececcccccssenssceeseSE

Virtual Processor Table.c.cececccccacenensel?
Level—=1l Schedulingececerceccocesscencccseseld
@, GetWOrK.ccoeeocccscecccccsoscscossccaceasbl
Virtual Processor Instruction Set..........65
Q. Walt,..ieieececscsccacesccoccssencsocessbE
D, S18Nalecccecesccersocransnsescncnsosncasctl
C. SWAD_VIDBR:cecoscessssssccssosscascncses?e
D € P ¢

e. set-vpreempt.........O....O.."........?s

fo Test _VPreemptececceccccescccscccecnscnss?d

C. TF—AFFIC CONTROLLER..................l....'.....78

1.
f 3 20
1 3

Active Process Table..icececcarctcscecscaess8
Level=2 Schedulin@.ccecoccccccccocccscsccesEl
d, TC_GetworK.uiecoeossocssccscsnassscaasse8l
b, TC_Preempt Fandlereeccsceccccscecocsssssl
EventcountS.ccesccececcscescensscncscconnssBe

a. Advance.o‘...ooooo.oo.ooooooooooo-.0.0.&5

MR 4 v sy, o

P P Oy S e D

0, PR PR % AYrOR TH 307 ST N ROy 7 S -t o




De AWalt.vecescecccoccocsssscnscccsccsceeel
Co REAA..ciccrvecocescrcscscoccssscccenaeelb
d. TicKel.ceeccerccsconcsssssscrsocscccnseas8b
D. SYSTEM INITIALIZATION..cccecocccocccccaccscecesBb
CONCLUSION.ccocecsocscccccsscscsccssscsasssacssceeIl

A. RECOM"ENDATIONSO..O....'...............l.....gl
B. mLLo' ON 'onx..........OOO......O....l......gz
APPENDIX A ~ INNER_TRAFFIC_CONTROLLER LISTING.....cc0000..93

APPENDIX B - TRAFFIC_CONTROLLER _LISTING..ccoccececcecceseel26
APPENDIX C -~ EVENTCOUNT PROCEDURES....ccccceeccecscccesssls
LIST OF REPERENCES..ccccessccctcevsecsctcccccoscssscncsaeseld?
INITIAL DISTRIBUTION LISTeecscceccceccosncrescsscsonensesld9




B iAo Tt MR i s Vi S

s xR el

R O 1 R AT

ATRREY S vy e 1 e K T S sy T . N
ARG v o R

1.
2.
3.
4.
5.
6.
7.
8.
9.
1¢.
1.
12.
13.

15.
16.

B

LIST OF FIGURES

SASS SySteMecescescorscscsccsccsessnsssesocsrescsosnsscscald
Reference Monitor.ccecccocscecssoncccescsccnnsccscessll
Process HiStOrY.ecesosocececcscccacocssccososasoncnssesil
Segmented Addressinf.ecccececececcsseccsscsscscsscaseadl
SASS Protection RingSececeececerscceccovrsssccnssnses b
SASS Process configuration.ccceccececccccececoncanesedd
Distridbuted Eernel.cescecsccocoscocnccsccccccssoscsnsedd
Two-level Schedulingeccoccscecoccccccccscenncnccansssdf
MMU IMag@eecececcacscsossssscscsoossasacsnscscssconsacsssedD
Virtual Processor Table.c..veeecceccvscanscsccsnseseead?
Virtual Processol StateS....csececceccccsssscecsccsssdE
SWAP DPR.ucececcossosecscavesccccasosnascsonsnancsneseBl
Eernel Stack Segmentecceececceccsecaccossscsccensesses€D
GETWORK Procedur@cccssccccescccscesccsscsoscsscssscscscsnesbbd
Active Process Table.cceceecscoscasscsnsssccscocsensesd

Initial Kernel stack....’..........IQ.....I.'......O.Es




R

[T T MR L,

i MR AN,

TP T

ACKNOWLEDGEMENT

This research 1is sponsored in part by Office of Naval
Research Project number NR 337-0€5, monitored by Mr. Joel
Trimble.

I am indedted to a number of people for the suppert they
have given me 1in completinz this thesis. Lt. Col Roger
Schell, my advisor, was a pnever ending source of new 1ideas.
He provided me with solutions to many seemingly unsolvable
provlems, and I greatly appreciate the many hours hne has
spent helping me to clarify my work. Without his atle and
enthusiastic guidance, this thesis could not have bteen
written.

Mike Wwilliams and Bobd McDonnell helped me with many
hardware problems that I encountered ian gettine up and
running on an unfamiliar system.

Finally. I would like to thank my wife, Médelyn, and my
children, Stephen and Monica for their patience and
understanding. They won’t have to tip—toe around the house

any more.




I. INT ¢ N

The application of contemporary microprocessor
technology to the design of large-scale multiple processor
systems offers many potential Ddenefits. The cost of
high-power computer systems could be reduced drastically;
fault tolerance {in critical real-time systemS could be
improved; and computer services could be applied in areas
where their use is not now cost effective. Tesienine such
systems presents mary formidable problems that have not been
solved by the specialized single processor systems availabdle
today.

Speci?ically, there is an increasing demand for computer
systems that provide protected storazé and controlled access
for sensitive information to be shared among a wide range of
users. Data controlled by the Privacy Act, classified
Department of Tefence (DoD) information, apd the
transactions of financial institutions are dut a few of the
areas which require protection for multiple levels of
sensitive information. Multiple processor systems which
share data are well sulted to providing such services - {f
the data security problem can be solved.

A solution to these problems - a multiprocessor system

design with verifiadle information security - is offered 1in

AR . P TN e . B 1 g
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a family of secure, distrituted multi-microprocessor
operatineg systems designed dy O°Connell and Richardson [1].
A sudset of this family, the Secure Archival Storage System
(sass) [2,3], has been selected as a testbed for the general
deslgn._SASS will provide consollidated file storage for a
network of possibly dissimilar "host” computers. The system
will provide controlled, shared access to multiple levels of
sensitive information (figure 1).

This thesis presents an implementatior of a  Ddasic
monitor for the O°Connell-Richardson family of operating
systems. The monitor provides multiprogramming and process
management functions specifically addressed to the control
of physical processor resources of SASS. Concurrent thesis
work [4] 1is developine a detailed design for a security
kernel process, the Memory Manager, which will manage SASS

memary resources,

12
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A. PBACKGROUND J

The general family design is composed o0f a supervisor
and a security kernel. The supervisor provides dynamic
linking, a discretionary security policy, demand memory
manazement, and a hierarchical file system in support of the
user. The security kernel manages physicai resources to
provide scheduling, interprocess communication and
syachronization, and a non-discretionary security policy.
The design 1is 1loop-free to permit the implementatiorn of
system subsets raneing from a Simple monitor to a eeneral
purpose computer utility.

SASS is a sudset of this system and does not require use
of several 'higher levels of the general system design.
Dynamic linking, demand segmentation, transient prccesses,
and a user domain are not necessary for its intended
operation, and are excluded. The software of SASS is
partitioned into two domains. The security kernel, which is
the most privileged domain, manages system physical
resources in a manner desigsned to prevent unauthorized
information flow, regardless of action taken by other
elements in the system. The 1less privileged domain, the
;upervisor (2], provides each host with a hierarchical file
system in which it may store and retrieve files and share
them vwith other hosts. The hosts send commands and transfer

files via bidirectional digital links. SASS was designed for

14
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implementation of currently availabdle microprocessor
hardwvare. Multiprogramming is vused to improve system
efficiency and to create a virtual environment which frees
the remainder of the operating system from a dependence on
the physical processor configuration. Frocessor management
provides a means of coordinating the 1{interaction of the
asynchronous processes whican comprise the system. This
implementation employs a processor multipnlexing technique
for a distributed kernel and presents a virtual interrupt
mechanism. The modular, bhierarchical structure of the
software 1is loop-free to support system expansion to higher
level functions.

Although the primary goal of the design is security, the
clean, logical, process-oriented structure of SASS offers
other bdenefits as well, includine fault tolerance, resource

configuvration independence, and efficlency.

B. COMPUTER SECURITY

The need for providing protection for information within
a computer system 1s well documented. Development of the
security kernel technology [5,6], bhas transformed the
operating system designer’s approach from a game of wits
with penetrators into a methodical design process.

In general, security is provided by providine protectior

for 1information 1in accordance with a specific protection

15




pelicy. In the case of computer security this is
accomplished by coantrolling the access of people to
information. Althoueh this protection can bte provided by
external controls (e.g., confining the computer system and
all its users within a physical security perimeter), this
method is inefficient and prone to human error. Furthermore,
a distrituted computer network will protably de dispersed
over too wide ar area to bde physically confined. Supported
by the security xernel approach, an internal protection
mechanism controlled by the computer operating system is a
feasible solution.
1. Reference Monitor

The concept of protection is realized withir the
computer system by the 1implementation of a mathematical
model of information security. This model is based on an
abstract representation of security called the Reference
Monitor [7?]. The Reference Monitor describes a meckanism for
controlling the access of subjects to objects, based on a

set of access authorizations (figure 2).

Reference Monitor

SUBJECT

REFERENCE
(e.2., process)

MONITOR
+ I

ACCESS

AUTFORIZATION

OBJECT
(e.2., file)

Figure 2
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Every time a subject attempts to access an otject,
the Peference Monitor checks to determine if the sutject has
autherization to perform the desired operation (e.z., write,
read) on the obdject. If the policy does not avthorize the
access, the Reference Monitor will prevent the sudbject from
performing the requested operation. This mechanism 1is
realized within the operating system as the security kernel.
Several system features are required 1in order <for the
mechanism to function correctly.

First, every reference to information (i.e., every
access to primary memory by the processor) must go through
the security kernel.

Second, the implementation of the security kernel must
be an exact representation of the mathematical model of
information security.

Third, the security kernel must be tamper-proof.

2. Security Policy

The security policy to te enforced by the computer
system consists of external laws, rules, regulations, etc.,
which estabdlish permissable information access independent
of the computer system. Therefore, a computer system will bde
secure only with respect to a specific security policy. The
security kernel concept supports a dbroad range of security
policies that can be divided into two classes,

non-discretionary and discretionary security.

17
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a. Non-discretionary Policy

Non-discretionary security policy uses labels to
insure only permissable access of subjects to otjects is
provided. Obdject 1labdels reflect odbject sensitivity and
subject 1ladels reflect subject authorization. (For example,
Natiomal Security Policy labels include Unclassified.
Secret, etc.). A non-discretionary security policy provides
compromise protection (from unauthorized reading), integrity
protection (from wunauthorized modification), and must
prevent 1information leaks resulting from indirect access to
unauthorized information as well. A non-dicscretionary
security policy requires that all sudjects and otjects have
labels. Most contemporary computer systems do aot provide
this explicit 1lateline and therefore implicitly make all
access permissatle.

b. Discretionary PFolicy

Discretionary security policy provides a finer
division of access by allowing irdividual subjects to decide
which of the permissable accesses, determined by
non~discretionary policy, will actually be allowed (e.g.,
DoD’s "need to know"). Many contemporary computer systems
support discretionary security policy with access control
lists, file passwords, capability lists and other

mechanisms.
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3. Security Kernel Design

By careful interpretation of the mathematical model
of the Reference Monitor, the security kernel is designed to
be a sudset of operating system functions. Kernel primitives
form an interface between this subset and the remainder of
the system. If these primitives are implemented correctly,
their use guarantees that information will be protected in
compliance with system security policy, regardless of any
action taken by other portions of the cperating system or by
the wuser. A more detailed discussion of the security model

is provided in (4,5,6].

C. SCOPE OF THESIS

In this chapter a sudset of the general operating
system design, the Secure Archival Storage System (SASS),
was descridbed. The concept of informatior security was
examined and the security kernel was presented as a
technically sound approach to the problem of providing
internal computer security. )

Chapter fTwo will discuss the design goals of this
operating system. Functional design requirements will ©de
developed and the issues of physical resource managemrent and
performance will be traced to specific attridbutes desired in
system hardware. The rationale behind the ultimate selection

of Zilog’s 28g¢e¢ Microprocessor and 26¢1¢ memory managerent

19
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unit (MMT) for use in the SASS testbed implemertation of
this operating syster will be discussed.

Chapter Three will descrite the high level design of
SASS with an emphasis on the security kernel design. & view
of the user (computer host) eavironment as a collection of
cooperating processes will be presented, and tae
hierarchical structure of the distridbuted kernel rodules
will be examined in detail.

Chapter Four will present an implementation of the SASS

security kernel modules taat provide multiprogramming and
; processor management. The coanstruction of the virtual
machine environment will be described and the advantages of

a two—level scheduling mechanism will be explained.

Finally an evaluation of this 1implementation will ©be
presented with recommendations Tor improving the design and

suggestions for follow on work. g :




II. PERATIN YSTEMS DESIGN CONCEP

The kernel primitives providine multiproeramming and
process management form one of the smallest and most bdasic
subsets in the family of operating systems designed by
0‘Connell and FKRichardson (4]. As developed here they were
implemented specifically to support SASS. In general the
same Kkernel primitives will support all rembers of this
design family.

Before discussing the high 1level design of the SASS
security kernel and presenting an implementation of these
primitives, it is useful to investigate the general design
methodology applied to the development of this operating
system. In this chapter the design goals of SASS will |Dbe
analyzed and traced to functional requirements and hardware
attributes considered necessary or desiratle in support of
the system’s design goals. It 1is recognized tkat the
operating system user Will protadly not address these issues
directly when specifying system design goals. The material
presented here concerns the approach of the system designer
to the definition of requirements implicitly related to user

desien goals.
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A. DESIGN PFIIOSOPRY

Two issues confront the operating system designer.
First, he must provide system functions whick support the
services requested by the user. These functional
requirements affect the 1logical design of the system.
Second, he must address iésues of cost and performance. Cost
and other management considerations will not ©be addressed
here., Ferformance issues concern the management of physical
resources and ultimately can bYe reduced to hardware
requirements.

There 1is a considerable amount of literature devoted to
the development of the functional design of operating
systems. Dijkstra [€] has described a technique for reducing
tte complexity of the design by allocatine operating system
activities to a number of cooperating processes. Process
structure is simplified in turn by defining its functions in
levels of 1increasing abstraction and %ty applying the
principles of structured programmine.

vadnick and Donovan ([9] have described an operatine
system as a hierarchical extended machine. Program modules
are added to the system hardware to provide many extended
instructions in addition to the hardware instructions
available on the tare machine. In complex systems one
extended machine may be constructed upon ancther to form a

system composed of levels of abstract (virtual) machines.

22
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Saltzer (12] and Reed (11, 12] hnave discussed the
advantaees of resource virtualization and have describded
some usefyl interprocess communication mechanisms. The
Zzeneral design stratesies presented {in this and other
research aid the operating system designer 1in developing
system functions in a clean, logical, verifiable design.

The selection of an appropriate computer architecture,
which supperts bdoth functionsal requirements and the
efficient management of physical resources, often proves to
be a more difficult issue. Frequently operating systems
desien 1is shaped by the capabilities of system hardware.
This may be a result of performance limitations or cost of
available hardware, but often this course is taken Yecause
traditionally, system design begins with hardware., Since a
primary e0al 1ian operating systms desien 1is to create a
cspecific operational environment for the wuser, it would
appear to be preferable to design from the desired
environment “down to" the hardware. In this way all
components of the system, software and hardware alike, are
evaluated in the light of the ultimate goals of the system,
and any incompatabilities dbetween required functions and
hardware capabilities will dYe discovered early in the
design. Then, if modifications are required, design changes
can be rade at @8 high 1level which will preserve design
integrity. LSI technology currently provides a wide variety

of relatively inexpensive microprocessor hardware from whizh
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to select specific physical components. Furthermore, it 1is
of ten feasible to design special purpose hardware to
specification, So the traditional restrictions on hardware
versatility 1in systems design need not apply ir many cases
to microprocessor systems,

In summarv, the top-down design philosophy can tGe

applied to operating systems design in the following manner:

1. Identify general and specific design goals. :
2. Derive functiornal design requirements.

3. Identify performance requirements.

4, Select system hardware. !
5. Develope kernel software.

6. Tevelope the remainder of the 0/S software.

2. GENERAL DESIGN GOALS

Althoush tany desizn =zoals depend upon specific system

application, there appear to be some attritutes desiratle in
all operating systems.
1. Tlogical Structure

Computer system design is an engineering prodlem and
the tools of the engineerine design process should be
applied to the development of software as well as hardware
{13). Clarity should be a major goal of any design for if
the operating system cannot be understood easily it will be
difficult to test, difficult to maintain, and its
correctness will always bte {in doubt. A sound enginering

design philosophy is not guaranteed to generate error free

24
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systems, bdut 1if system functions are cleanly oreanized and

well understood, then it is likely that there will te few
errors and these can be corrected without difficulty when
discovered.
2. TFault Tolerence
If an operating system is to bYe reliadle, the
software it wuses must bde protected from damage whenever
possible. In particular, tasks performed by the system
should be isolated from another so that a malfunction (e.g.,
as tne result of hardware failure) in one task has no effect
on others.
3. Efficiepcy
The efficient use of physical resources {prccessors,
memory, periphals, etc.) continues to te a primary decign
goal. Bowever, since hardware 1is no 1longer the scarce,
expeansive commodity it once was, a concern for overall
system efficiercy (i.e., higher thorugh-put, faster response
time) may be more dimportant. With appropriate component
selectien many software functions c¢an be replaced by
hardware functions that can provide an improvemert ir syster

performance at a small additional hardware expense.

C. SPECIFIC DESIGN GOALS

The family of operating systems designed by O°Connell

and Richardson preovides all of the services expected of a
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state of the art, general purpose operating system. Many of
these general services are not necessary in the SASS subset
of the family. The number of processes required by <SASS s
determined by the numbdber of host computers linked to SASS
hardware. A design cholce was made to fix this number at
system generation time. Therefore dyrnamic process management
is not required; SASS processes exist for the life of the
system. A primary function of SASS is the transfer of files
between host computers and SASS via bidirectional digital
links. As a result, the system will nhave a 1lcw transaction
rate, and the relatively fast response time desired in a
time-sharing system i_ not required here. Sass doces not
provide programming services to users; the system strictly
manages an archival storage system. This elimirates the
requirement for a user domain and because the demands on
primary memery are not excessive, there is no need for
dynamic memory management.

Other services of the ¢eneral svetem provide
essential support to SASS. These services 1include 1I/0
management, file management, anrd the physical resource
management and information protection functions provided Dby
the security kernel.

The SASS requirement to provide multiple host computers
(users) with controlled, shared access to a multilevel
secure data warehouse” leads to several design goals. These

include: internal security to proctect infermation in a
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distrituted computer network; configuration independence for
system versatillity; and a subdbsetting capability to support
future system expansion to more complex memters of the
design family.

1. Internal Security

A unique feature of SASS 1is the specification of
multilevel security as a primary design goal. Multilevel
security provides controlled sharing of information of
varyine sensitivity among many usSers in accordance with an
access policy implemented internally by the operating
system. It is essential that a system supporting a remotely
accessed data. tase containing information of different
access classes be provided with an 1internally enforced
security policy.

2. Configuration Independence

The resource configuration of a mul ticomputer system
i1s highly changeable. Processors are added and removed;
memory 1is reconfigured; interconnection schemes are altered
and peripherial equipment is changed. The operating system
of such a design should be sufficiently flexidle to permit
maintenance and to allow for growth and reconfiguration
without requiring drastic system redesign or noticeabdly
affecting the user’s eavironment.

3. Sub-getting Capadility
Operating system sub-settineg” refers to the ability

to form meaningful subdbsets of the design by eliminating many
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of the services that can be provided by tne system without

affecting the usefulness of the remainder of the system.
Sub-setting permits the system to be tailored to fit a
number of specific desiegns ranzing from a simole monitor to
a full service time-shared computer utility. The
implementation presented 1in this thesis creates a ronitor
that provides multiprogramming and processor management.
This subset supports more complex family memders of the

design such as SASS.

D. DESIGN REQUIREMENTS

In a top~down approach to design, goals are clarified
and defined by requirements which describe either the system
functions or address cost and performance issues (hardware
requirements). The functional requirements defined dYelow
support the specific desien ~eoals of SASS and provide
features desiradle in any operating system, such as a
logical structure, fault tolerance, and efficiency of
operation.

1. Tunctional Requirements

Functional requirements define services which must
be provided to support the user’s environment.
a. Process Organization
By designing an operating system as a collection

of cooperatine processes, system complexity can be greatly
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reduced [€]. This is because the asynchronous nature of the
system can bYe structured 1logically by representing each
independent, sequential task as a process and by providicog
interprocess communication mechanisms to prevent races and
deadlocks during process interactions.

The notior of a process provides a complete
description of all instructions executed ard all memory
locations referenced during the performance of a task. A
process 1is defined by an address space and ar execution
point. The address space is the set of memory 1locations
which covld be accessed during process execution. (The
process is viewed as a past, present and future "history of
memory locations which actually were referenced.) The
execution point is the state of the processor at a glven
instant dvring process execution. In the abstract view, an
address space is defined by a collection to discrete points,
each representing a memory word. The process i< descrited by
the path traced through this address space from process
creation to destruction. In figure 3 the main path traces
the process execution point as it moves from one instruction
(1.e., memory word) to another during process execution. The
branches from this execution point path represent data

references.
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Process History

Address space

Process

creation(J/,(

Process
*lsivdestruction
Figure 3

Several advantages result from using a process
oriented design. As a tool for dealing with the asyncaronrous
nature of system operation, processes provide a simple,
logical, nigh-level structure for the design. For example,
the Secure Archival Storage System supports each host with
three processes: a I/0 Manager, a File Manager, and a Memory
Manager, which interact to provide sSecure file managemrent
services to the host. This interaction will be described
further in the next chapter. Since each process is confined
tn a secific address space, tasks are isolated from one
another and system fault tolerance is improved. By providing
an internal representation for each user, a process nicely
fits the definition of a "subject” in the Reference Monitor
and therefore supports the design goal of providing internal

security.
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k., Memrmory Segmentation

The address space of a process is composed of a
collection of segments. A segment is a logical collection of
information (e.g., procedure, data structure, file, etc.)
and 1s the basic logical object of this design. Figure 4
tllustrates the two-dimentional nature of the segment
address., Bach segment consists of an arbitrary region of
memory containing a sequence of words with conventional
linear addresses. Two-dimentional addressing frees
information from dependence on a particular memory location

by making it arditrarily relocatable.

Segmented Addressine

<KSEG #nd>> OFFSET

Descriptor segment Segment #n

T
0
f
£
S
e
t

Figure ¢

The descriptor segment provides a 1ist of
descriptors for all segments in & process address space. In
addition, segmentation supports information sharine since a

segment may btelong to more than one address space,
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Segmention also provides a means of associating 1Ilogical
attridvutes and labels wlth each segmeat, such as access
class, domain, etc. This feature supports segments as
internal representations of the Reference Monitor’s
"object”.

>c. Abstraction

Abstraction provides a method for reducing
problem complexity by applying a general solution to a
collection of specific cases [14]. Structured proerammine
provides a tool for creating abstraction in software design.
By strictly applying two special rules in addition to the
general principles of structured programming, & structure
consisting o? 1levels of 1increasing abstraction carn be
constructured,

rirst, calls cannot ©be outward toward higher
levels of abstraction. This frees 1lower 1levels from a
depen?ence on higher levels by creating a loop~free
structure [15] and results in a design which is'capable of
having suhsets,

Second, calls to lower levels must te by Special
entry points or gates. Each level of abstraction creates an
virtual hierarchical machine [9]. The rate to each level
provides a set of 1instructions created for that virtual
machine. Thus higher levels may use tne resources of lower
levels only by applying the instruction set of a lower level

machine., (At domain bouvndaries, use of gates is strictly
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enforced by a ring-crossing mechanism; otherwise gate use is
implicit 1in the structure of the software.) Once a level of
abstractior has Dbeen created, the details ef its
implementation are no 1longer an issue. Instead users See
layers of virtual machines , each defined bdy 1its extended
instruction set.

Each process used in SASS is designed in levels
of abstraction. Wwhen the rules of atstraction are applied to
level @, the physical resources of the system, these
resources are virtualized”. Thus the first 1level of
abtstraction creates “"virtual processors”, ~virtual memory”,
ard "virtual devices” from the ;ystem's hardware. At each
higher level the detail of the design is reduced. The gate
at the Ybdoundary bvetween the hisghest level of the security
xernel and the lowest level of the supervisor provides a
mechanism for isolating the xernel as well as insuring that
each memory access is via kernel software. This mechanism is
implemented in SASS Yy a ring-crossing mechanism called the
Gatekeeper.

d. Resource Virtualization

The first 1levels of abstraction above system
hardwvare create virtual representations of physical
resources (virtual processors, virtual memory, virtual
periphals). Since upper levels of the design operate on
these virtual resources, rather than on paysical resources,

most of the design (i.e., everything above resource
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virtualization 1levels) 1is independent of the physical
configuration of the system. By providine virtual to real
resource binding in the kernel, and by enforcing entrv into
kernel levels with the Gatekeeper, SASS protects physical
resources from tampering and insvres memory access only via
the kernel. AS a result, the kernel modules of each process
will guarantee that the system’s non-discretionary security
policy 1is enforced. Iancluding in the kernel oaly those
functions essential to system security keeps it small and

reduces tae jod of verification to manageabdle preportions.

2. Zardware Heguirements

Virtual resources are created by tne multiplexing of
various types of 1information on a physical resource.
Multiplexing can te defined as the use of a single resource
for different purposes at different times. For example the
physical tus 1lines can be used both for addresses arnd data
durine different times durine the machine cycle. Similarly,
logical wusers of a hardware system can share resources. Tae
atility to rmltiplex processors and memory efficliently
provides a mechapism for the virtualization of these
physical resources.

a. Processor Virtualization.

A virtual processor is a data structure that
contains a complete description of & process in execution on

a physical processor at a given instant. This description is
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contained 1in the process execution poirt. The address space
of the process must be accessadle to the virtual oprecessor
when 1t 1is loaded on (bound to) a CPU. To provide a useful
virtvalization capability, the CPU must have the ability to
efficiently multiplex process exection points and address
spaces (i.e., it must support multiprogramming).

b». Memory Virtualization.

In many memory handling <chemes Process cannot
run unless the entire address space is loaded in primary
memory. This may require a larse main memory or it may
restrict the size of the address space. An alterrative plan
requires an ‘operating system which manages primary and
secondaryv memory to create the illusion of & memory which is
larger thar the system’s primary memory. Since the larger
memory 1; only an illusion, it 1is often called virtual
storage. The 1logical, relocatadle, 1information otjects
created by memory Segmentaion, provide an essential merory
multiplexing mechanism for the efficient implementaticn of
virtual storage.

¢c. Protection Domains

An essential requirement of internal security is
that the security kernmel be isolated from other elements of
the system. This car bde accomplished by the construction of
protection domains. Protection domains are used 1to arrange
process address spaces into rings of different privilege,

Thi{s arrangement is a hierarchical structure in which the
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most priviledred domain is the innermost ring. The structure
essentially divides the address space into levels of
abstraction with strictly enforced gates at the rine

boundaries (Figure 5).

SASS Protection Rinas

Gatekeeper

Security Kernel

Bare Machine

Figure 5

Protection rings mav be created in software, but
a hardware implementation, where eate use is enforced by
hardware, is much more efficient [16].

The protection provided by the rine structure is
not a security policy. (Security protection is implemented
by a lattice structure XXnown to the Non-discretionary
Security module ‘in the kernel.) It does, however, enforce
the hierarchy of the virtual machine by creating a

privilepsed kernel ring within the supervisor ringe.

E. HARDWARE SELECTION

The manifestation of an operating system desien 1is, of
course, software in execution on system equipment. If system
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equipment must be selected early in the design, care rust be

taken to insure that overall system design goals are
compatidble with actual hardware capabilities. If design
goals must be met (e.g., the enforcement of internal
security in SASS), then actual hardware selection should be
made léte in the design process. Then, ever if & poor
hardware choice is made, the peralty for correctirg {t will
be small, since only the lowest level of the desizn (where
resources are virtualized) need be changed. In any case the
desien of the operating system and the desisn or selection
£ system hardwvare must proceed in concert.
1. 2Zilog 28691

The 7P¢¢1 is a general purpose 15-tit microprocessor

(177 with arn architecture waoich supports memory segmentation
and two-domain operations. It was selected as the tarzet
machine for implementation of the system because of the full
range of support and close match it provided to design
requirements. These supporting'features are descrited telow.

a. Memory Seementation

The CEU can directly access 8M bytes of address

space using a memory segmentation capability rrovided
externally by a Memory Management Unit (Z821¢ MMU). The
23-bit address required to address 8M bytes is a logical two
dimensional address consisting of a 7-bit segment numder and
a 16-bit offset. The memory management unit converts this

into a 24-bit address for the phyeical memory. The address
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space can bYe divided into as many as 12E relccatabdle
sezments containine up to 64K bytes each. Each merory
segment carn be assigned several attributes which provide
memory access protection (read only , system mode only
(t.e., ring #), execute only, etc.) and memory management
data (changed, referenced). With these capabilities the
Z8¢e¢1 CPU can support all requirements for segmentatior,
memory virtualization and protection domains.
t. Multiprogramming

Processor multiplexing is supported by tae C:U’s
mul tiprogramming capabilities. MULTI-MICRO instryctions aid
in estabdlishing a synchronmization mechanism (by rmutual
exclusion) between multiple processors. Seperate stack, data
ard code address spaces are maintained for eack rire of
operation. The load myltiple instructior allows the contents
of registers to te saved and 1loaded efficiently. These
features permit efficient storing and loading of ©process
execution points,

Address space multiplexineg is also supporied bdut
is somewhat 1inefficient. In some systems, suvch as Multics
[1€], a descriptor base register (DBR) is provided to point
to a brocess descriptor segment in memory, so changing the
address space of the physical' processor is accomplished
merely by changing the DBR. Since the Z&2¢¢1 CPU implements
the descriptor sepment as$s a collection of descriptor

registers in the MMIT, all of the descriptors for the address
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space must te saved and loaded to change processes. Thls can

make processor multiplexiuz (multiproeramring) quite

ik S G o

inefficient. In the worst case, when tne entire MMU is saved

3 1 oareha s

§ and loaded, a process switch will take about 2 ms. It may be ;
. possible to improve on this performance bdvy increasing the ;
numdber 6f MMU’s in the system. Then the address Space can be |
: changed simply by switching control to an;ther MMU.

c. Two-=Domain Operations

} The Z5¢¢1 CPU can operate in either system mode
or normal mode. In the system mode all operations are
allowed, %btut 1in the user mode, certain system instructions
are pronibdited. . The system call instruction allows
% controlled entry to the system mode. This two-domain

instruction capadbility suppcrts the two domain sturcture of

SASS by providine a single controlled entry into the kernel
(SYSTEM CALL instruction). The descriptors contaired in the
MMU0 reeisters provide the capability to partition process
address spaces into supervisor and kernel domairs.
} 2. Selection Rationale
; The characteristics 1listed above - processor
multiplexing support, a memory segmentation capability,
ﬂ multiple domain insturctions, and multiple domain mermory
partitioning - are features which are essentigl to an
effictent implementation of SASS. The 2E€¢1 has other
desiradle features: vectored and ron-vectored interrupts,

laree, powerful instruction set, many datas types, etc. These
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attritutes make the Zilog system a suitable choice as a dare

machine for the Secure Archival Storage System.

F. SUMMARY

This chapter has provided a description of the

|

|

{ methodology employed 1in the design ané specificatior of
i SASS. In particular it was noted that a top-down desien
|

philosophy most effectively supported implementation of
system design 20als. Eequirements supportine the primary
deslgn goal of internal security and other general and 3
specific goals were defined and traced to desired hardware
{ capabilities. Fimally, capabilities of Zilos’s 22¢el

X ' microprocessor winich support the SASS design were descrited.

Chapter Three will provide an overview of the SASS

design. The desigr will be descrided from a frocess
viewpoint and the hierarchical structure of the distriduted f

xernel will be examined.
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IIT. SECURITY KZRNEL TESIGN

The high 1level design of the Secure Archival Storage
System car be descrited by a collection of <cooperating
processes. The use of processes to perform operating system
functions greatly simplifies the problem of descriting the

asynchronous marner in whicn services are requested.

A. PROCESS VIEW

There are two kinds of processes within SASS, supervisor
processes andi kernel processes. Supervisor processes provide
high level services to host computers [2]. Certain functions
of the operating <cystem are distrituted throughout all of
these processes; that 1s, supervisor processes loglically
share a <collectior of distributed kernel modules. Kernel
processes provide specialized services within the operating
system. The system wuser s not aware of the existence of
these processes, but they are called upon, within the kernel
domain, by supervisor processes to perform necessary

operating system functions in support of user services.
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1. Supervisor Frocesses

One pair of supervisor processes, an I/C ~anager and
a File Manager, represents each computer host supported by
SASS.

The File Manager controls SASS and directs all
interaction between SASS and computer hnosts ir order to
maintain a structure of hierarchical files on benalf of each
host It interprets commands received from hosts via the 1I1/C
Manager ard coordinates tae execution of requested services
with assistance fror the I/0 Manager and the Memory Manager
(described bdelow).

The 1/0 Manaeser traasfers information via a link
between each host and SASS. Tata is transfered ty fixed-<ize
packets in cormand, data, and synchreonization formats. The
I1/0 Manager provides only a transfer service and does not
interpret the data.

2. Xerpel Processes.

The two kernel processes used by SASS are the Memory
Manager and the Idle process. The Memory Manager controls
primary and secondary memcry. The design of this process is
the topic of concurrent thesis research [3]. The Merory
Manager transfers segments Yetween primary and secondary
memory in response to requests from supervisor processes.

™he Idle process defines the "no werk state of the
system. SASS attempts to schedule useful work on system

processors whenever possitle. Only when there is no work to
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be done, {(i.e., nec commands pending from nosts) will this
process te called upoen to execute.
2. fost Fnvirconment

Fost computers view SASS as a remote data warehouse
where they mayv store and retrieve files (figure €). Each
host is provided with a virtual file hierarchy constructed
from directory and data files. A pair of SASS supervisor
processes (an I/0 Manager and a File Manager) provide each
host with a set of commands by which it may store and
retrieve files in its virtual file system and share files
with other hosts. The distributed kernel functions of each
process control the physical resources of the system in

support host commands and SASS security'policy.

SASS Process Configuration

supervisor
kernel
Idle
hardware
CPU MMT PRI MEM SEC MIM
"data warencuse

FIGUR® €




E. VIRTUAL MACVINE VIEY

The distriduted modules of the security kernel create a
virtual hierarchical machine which controls process
interactions and manages physical processor resources. The
gernel is not aware of the details of process tasks. It
knows each process only by a name (viz., an entry number in
a tabdle) and provides processes with scheduling and
interprocess communication services tased on this process
identifier. All supervisor processes share the modules of
this virtual hierarchical machine (Figure 7).

The kernel is constructed in layers of abstracticn. Each
layer, or level, builds upon the resources created at lower
levels. The rules cf abstraction described in Chapter 2 were
applied to the design of this structure. Level € is the tare
macaine which provides the physical rescurces (processors
and storaee) upon which the virtual machine is constructed,
The remainder of this chapter will descrite the 1level of
virtualization (or layer of abstraction) created by each
distributed kernel module.

1. Ipper Jraffic Contreller Module

level-1 of this virtual machine is the Inner Traffic
Controller Module. This module creates a set o¢f virtual
processors with the extended instruction set: SIGNAL, WAIT,
SWAP_VDER, IDLE, SET_VPREEMPT, TEST_VPREEMPT, and
RUNNING_VP,

i eedis e ke
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SIGNAL and WAILT provide ar interprocessor

communication mechanism used within the xernel to provide

multiprogramming. These 1instructions invoke the level-l i |
scheduline procedure, GETVORK, which multiplexes wvirtual j
processors on & physical processor. i &

S¥AF_VLCBR and IDLE are instructions invoked from

level=2 by the Traffic Controller Module to schedule

4 processes on a virtual processor.

{ STT_VPREEMPT and TEST_VPREEMPT create a virtual
processor interrupt mechanism. SET_VPREEMPT is invcked from
level-2 when the traffic controller desires to load a new
process on & virtual processor that 1is not scheduled.
TIST_VPREZIMFT is invoked by the Gatekeeper of each

distributed process upon every exit from the kernel domsain.

The Gatekeeper wunmasks virtual interrupts by testing the
interrupt flag of the scheduled virtual processor. If the
flag 1is set, a virtual interrupt handler is invoked,
otherwise the process enters the supervisor domain normally.
RUNNING_VP is invoked from level-2 to provide the
Traffic Controller with the 1identity of the currently

scheduled virtual processor. The identity of a particular

processor must bte known in the virtual eanvironment, just as

} the identity of a physical processor is required 1in a

multiprocessor system.




2. Traffic Controller Module

The Traffic Controller resides at level-2. It
manages the scheduling of processes cr virtual processors by
invokine the extended instructions of the virtual processors
in level-i. In a&addition to 1implementing the level-2
scheduline alesorithm, the Traffic Controller creates the
extended instruction set: ADVANCE, AWAIT, and FROCESS_CLASS.

ATVANCE and AWAIT are used to implement eventcounts
and <sequencers [11], an inter-processor communication (IPC)
mechanism invoked by the supervisor. Although SIGNAL and
WAIT provided an adequate interprncessor synchronization
mechanism within kérnel. Farks (2] determined that
supervisor process synchronization would be more effectively
served in the secure environment of SASS by the use of
eventcounts.

FROCESS _CLASS is invoked from level-3. It returns
the 1ladbel, subject access class, of the current precess for
determining a sudbject-object relation.

a. Scheduling

Scheduling functions are divided Dbetween the
Inner Traffic Controller and the Traffic Controlier. The
Inner Traffic Controller multiplexes virtual processors on a
CPT. The Traffic Controller schedules processes on virtual
processors.

The division of the scheduling algorithm bvetween

these two levels simplifies its design, because it seperates
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the issues of virtual processor management
(multiprogramming) from virtual memory management [12]. A
desiegn choice was made to provide each system CFU with a
small fixed set of virtual oprocessors. Since the virtual
processor data bdase is shared by all system CPU’s, it must
remain permaently in global memory.

The process data bdase, used to 1implement level-2
schedul. ' ng will bde much larger. Since supervisor processors
are known to the entire system, this data must also bde kept
in #lodal memory. Because 1level-2 1is sudject to mermory
management, this data could be kept on secondary storaee and
moved to primary memory when requested.

SASS does not provide dynaric mewory .management,
therefore the two-level scheduling design presented here is
not essential to the design. However, the structure has beer
provided in this implementation to support more complex
family members of the 0°Connell-Richardson design. Figure 8
illustrates the two levels of scheduling employed <ty the
distributed kernel.

The two virtual processors (Mem_Mgr_VP and
Idle_VP im Figure 8) are permanently btound to kernel
processes and are not in coatention for process scheduling.
The remaining VP’s are temporarily tbtound tc¢ supervisor
processes as determined by the Traffic Coatroller. If umo

supervisor process is availadle, the Traffic Controller
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invokes the Iamer Traffic Controller (IDLE) whick 1lcads an
Idle preocess on the virtual processor.

Tre 1Inner Traffic Controller scnedules virtual
processors on the physical processor. Ready virtual
processors with temporarily bound idle processes (VP #1 and
VP #2 in Figure €) will te scheduled only to give an 1Idle
process away for a supervisor process (i.e., when virtual
preempt flaz is set). The Idle process will a&actually run
when the viriual processor to which it is permarently %ournd
(the Idle-VF in Figure £) is scheduled. This will thavppen
only whern all other VP’s are waiting or temporarily bound to

Idle processes, i.e., when there is no useful work for the

CPJ.
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2. Non-Tiscretionary Security Module i

The Non-Liscretionary Security module in level-2
reflects the system’s security policy. It compares two
latels, subject and odbject access classses, passed to it by
other modules, and returns the relationship cof the ladels
based on a lattice structure known to it. To perform this 1
function it provides the extended instruction, REIATIOMN,

which is used by the EFvent Manager and the Segment Manager

to determine access permission. These modules makxe decisiorns

about access DbYased on the relationships: equal, less tharn,
greater than, and not related. The Non-discretionary
Security module is the only module which interprets tkhe
| . labels themselves. A different security policy {e.e.,
r Privacy Act vs TOL) can te implemented simply by chaneire
y : the lattice structure used in this module.

4, Zvent Manager Module

The Zvent Manager is a level=-2 module invoked ty
supervisor processes via the gatexeeper. This module creates
a set of extended instructions: ALVANCE, AWAIT, REAT and
TICKET. It determines the access permission o¢f desired
interprocess communications and ottains & glodal harndle from

a Memory Manager data base where event data is stcred. If

access is permitted, the event manager passes this handle,

TR

i . which identifies the event, to the Traffic Controller where
. the appropriate event <count instruction 1is invoked. For

sequencer operations the Memory Manager is invoked directly.
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The use of the handle is necessary because of the decign
cholice to store event data in a data tase of the Memory
Manager ([3]. This 4insures that inter-domain IFC dces not
violate SASS security policy.

5. Segment Manaser Module

The Segment Manager also resides ir level-Z. This
module creates a set of extended instrurtions for
manipulating segments. These 1instructions are: CRFATE,
DELETE, SWAP_IN, SWAP_QOUT, MAKE_ENOWN, and TERMINATE.
Modules of the supervisor domain invoke these instruvctions
to coordinate host support. CREATE and TLELETE add and remove
segrents frcm the system. SWAP_IN and SWAP_OUT cause a
segment to he moved tetween primary and secondary remory
(i.e., tetween & pafed disk and <contigvous memory).
MARZ_KNOWiN and TERMINATE add and remove a segrent from a
process eddress space,

6. Gatekeeper Module

The Gatekeeper exists on the boundéry tetween the
kerrel and supervisor domains. It provides the sole entry
point into the kernel domain, so when the execution point of
a process enters the kernel domain of its address space it
must do so through the Gatekeeper. -

The hardware of the MMU partitions preccess address

spaces into two domains by settinsz the ring number (zero or

one) in each segment’s




attridbute register. Software oprovided by the GCateXeseper

;; performs the following additional functions:

Kernel Enatry
1. Unmaskx EHardware interrupts.
2. Save supervisor domalin registers.

3. Save supervisor stack pointer in kernel stack
segment.

4. Checx arpuments and invcke appropriate Xerael

entry points.
(Virtual machine instructions).

Kernel Exit

1. Invoke TEST_VPREEMPT
(i.e., umnask virtual interrupts).

2. PRestore supervisor domain stack peinter,

3. Restore supervisor domain registers.

1]
*

Unmask hardware interrupts.

5. Return to process execution point in
in supervisor domain. )

This chapter has described the high level desigr of the
Secure Archval Storage System xernel from twc polints of

t . view. In the process view the system is composed of pairs of

supervisor processes (an I/0 Manager and a File Marager) for




each host computer and a pair of Xernel processes (a vemory
Manager and an Idle process) for each real processor in the

system. The supervisor processes provide nigh level services

L ’ to host computers while the kernel processes control system
memory Tresources ard provide ar idle system state. ;

Distributed kernel functions implement two levels of 3

scheduling, provide 1interprocessor synchronizaticn and
cormunication, manare segments, and iscolate and protect the
¥ kernel domain of process address spaces. The distrituted i
f kernel 1is <constructed as a hierarchical virtval rachize. |
Evidence of the versitility of the loop-free, ccnfigvration
} independent struvcture of this desien car bYe observed in
} concurrent thesis work in this a&area [18). An 1Intel <&p286
multiprocessor operatine system implementation, based orn the

same decsign, uses essentially the same virtual inc<turction

set described in this chapter. An implementation c¢f tke
first two levels of this kxernel machine is presented in the

next chapter.

H
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Iv., IMPIEMENTATION

Implementation of the distrituted kernel was simplified
by the hierarchical structure of the design for it permitted
methodical dYottom—up construction of a series of extended
machines. This approach was particularly wuseful 1in this
implementation since the bare machine, the Zepee
Developmental Module, was provided with only a small a&amount

of software support.

A. TEVFILOPMENTAL SUFPORT

A Zilog MCZ Developmental System provide? suppert ir
developine Z6€€€ machine code. It provided floppy diszx file
management, a text editor, a linger and a loader that
created an imagze of each ZE¢€CZ load module.

A 78¢2¢¢ Developmental Module (DM) provided the necessarv
hardware support for operation of a Z8¢€2 ncn-segmented
microprocessor and 18K words (32K bdbytes) of drynamic RAM. It
included a clock, a USART, serial and parallel 1/C svpport,
and a 2Kk PROM monitor.

The monitor provided access to processor repisters and
memory, single step and break point functions, Dbaslec TI/0
functions, and a download/upload capabllity with the MCZ

system.
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Since a segmented version of tne processor was not

avallable for system development, Seementation hardware was
simulated in software as an MMU 1image {see Figure 93).
Although this data structure did not provide the hardware
support (traps) required to protect segments of the kernel

domain, it preserved the gereral structure of the design.

MMU_IMAGE
OFFSET ATTRIBYUTES
| {eh bytey Low byte Size jAttridutes
seg
#

Fieure 9

B. INNER TRAFFIC CONTROLLER

The Inner Traffic Controller rums on the bare machine to
create & virtpal environment for the reméinder of the
system. Only this module 1is dependent on the ©physical
processor configuration of the system. All higher levels see
only a set of rurning virtual processors. A xernel data

base, the Virtual Procé&ssor Tadle is wused tbtv the Inner
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Traffic Controller to create the virtual ervironment of this
first 1level extended machine. A source listine of the Inner
Traffic Centroller mecdule is contaired in Agpendiy A.

1, Virtval Frocessor Tadle (VPT)

The VPT is a data structure of arrays and records
that maintains the data used by the Inner Traffic Controller
to rmultiplex virtual processors on a real processor ard to
create the extended instructior set that controls virtusl
processor operation (see Figure 12). There is one tatle for
each physical processor in the systerm. Since this
implementation was for a uniprocessor system (the Z&ecge M),

only one tatle was necessary.

Virtual Processor Tatle

10CK
PUNNING_LIST
PEADY LIST
FREE_LIST

~VP_|DBRy PEI ) STATE IPLE FLAG, CFY , NEXT VE , S _IIST
INDEX

'

MSG ' MUSSAGE | SENDER § NEXT MSG
INTEX

Figure 102
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The tatle contains a LCCK which suppnrrts an
] A exclusion mechanism for a multiprocessor syster. It was |
| provided in this implementation only to preserve the 1
generality of the design.

The Descriptor Base Register (DER) binds a process

to a virtual processor. Tae DBR points to ar MMU_IMAGE

coataining the list of descriptors for sezments in the

process address space.

A virtual processer (VF) can te in ore of three

states: running, ready, and waiting (figure 11,

Virtual Processor States

a.yrl\' I IIG
VP

14

=y
"
L |
-3

! FIGURE 11
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A running VP is currently scheduled oan a real processor. A4
ready VP is ready to be scheduled when selected ty the
level-1 scheduling aigorithm. A waitineg VF 1is awaitine a
message from scme other VP to place it in the ready list. In
the meantime it is not in contention for the real processor.
2. level-l Scheduling

Virtual processor state changes are ianitiated ty the
inter-virtual-prccessor communication mechanisms, SIGNAL and
WAIT. These 1level-1 1instructions implement the scheduling
policy by determining waat virtual processcr to bind to the
real processor. The actual %inding and unbdbiodine is
perfermed by a Processor switching mechanism called SWAP_DZR
{1¢). Processor switchine implies that somehow the execution
point and address space of & new process are acquired ty the
processor. Care must be taken to insure that the cléd process
is saved and the new process loaded in an orderly manner. A
solution to this prodblem, sugzested by Saltzer [1€], is to
design the switching mechanism so that it 1is a comrmon
procedure having the same segment number in every address
space.

In this implementation & processor register (R14)
was reserved within the switchina mechanism for use as a
DBR. Processor switching was performed bdPy <caving the old

execution point ( i.e., processor resisters and flae control
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word), loading the new DBR and then loading the new

execution point. The processor switch occurs at the instant

the DBR 1is changed (see figure 12). Because the switchirg
procedure is distributed in the same numbered seerent in all
address spaces, the "next” instruction &t the instant of the
switch will have the same offset no matter what address
space the processor is in. This is the key to the proper

operation of SWAP_LBR.

SWAP_DBR
Process #1 Process #2
Address space Address cpace
1 1- - _—
Call SWAP_DBR
Save return point
on call stack.
(Preccess #1)
Save execution point .
Swap DRE (R14) ==----=-- S A » Swap DER (R1¢)
. processor
. switch
* Load rew execution
point.
Load return peint
from call stack
(process #2)
Figure 12 *




To cenvert this switching mechanism to segmented
hardware it 1is necessary merely to replace SWAP_TEF with
special I/0 dlcck-move instructions that save the contents
of the ™MMU in the appropriate MMT_IMAGF and 1load the
contents of the new MMU_IMAGZ into tae MMJU.

a, Getwork

SWAP_DBR is contained within an internal Inner
Traffic Controller procedure called GETWORK. In addition to
multiplexing virtual processors on the CPU, GETWORZ
interprets the wvirtual processor status flags, IDLE azd
PREEMPT, and modifies VP scheduvling accordingly in an
attempt to keep the CPU busy doine useful work.

There are actually two classes of idle processes
within the system. One c¢lass belongs to the Traffic
Controller. Conceptually there is & ready level=-2 idle
process for each virtual processor availabtle to the Traffic
Controller for scheduvuling. When a running process tlocks
itself, the Traffic Controller schedules the first ready
process. This will be an 1idle process if no supervisor
processes are in the ready 1list.

The second class of idle process exists in the
kernel. The kernel Idle process is permanently tound tc the

lowest priority virtual processor.
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The distinction 1is made between these classes
because of the need to kxeep the CPU busy doirg useful work
whenever possidle. There is no need for GFTWORK to schedule
a level=-2 idle process that has bdeen loaded on & virtual
processor, because the idle process does no useful work. The
virtual processor IDIE_FLAG indicates that a virtual
processcr has been 1loaded with a level-2 1idle gprocess.
GETWORE will schedvle tais virtual prccessor only if the
PREEMPT flae is also set. The PREEMFT flasz is a sienal from
the Traf¢fic Controller that a supervisor process is now
ready to run.

When GETWORYX can find no other ready virtual
processors with IDLE and FREEMPT flaes off, it will select
the virtual processor permanently bound to the kernel - Idle
process. Only then will the Idle process actually run on the
CPU.

Getwork contains two entry poirts. The first, a
normal entry, resets the preempt interrupt return flag. (R?
is reserved for this purpose within GETWORK.) The second, a
hardware interrupt entry point, contains an interrupt
handler which sets the preempt interrupt returr flag. The
DBR (P14) must also be set to the current valve ty azy
procedure that calls GETWORK in order to permit the SWAP_TER

portion of GETWORK to have access to the scheduled process’s




address space. Upon completion of the processor switch,
GETWORK examines the interrupt return flag to determine
whether a normal return or an interrupt return is required.
The hardware interrupt entry point in GETWORK
supports the tecanique used to initialize the system. Eack
process address space contains & ke:nel domain stack segment
used by SWAP-DER ip GETWORX to save and restore YF states.
For the same reason that SWAP-DBR is contained in & system
wide segment numbder, the stack segment 1ir each process
address space will also have the same number (Seprent #1 ir
this implementation). Each stack segment is iritially
created as thoueh it’s process had been previously preempted
by @& hardware interrupt. This greatly. simplifies the
initialization of processes at system generation time. The
details of system initialization will bte descrited later in
this chapter. It 1is importart to note here, nowever, that
GETWORK must be able to determine whether it was invoked by
a hardware preempt interrupt or by a normel call, defore it
can execute & return to the calling procedure. This is
because a hardware interrupt causes three items to te placed
on the system stack: the return location of the caller, the
flag control word, and the 1nierrupt identifier, whereas a

normal call places only the return location on the stack.

Therefore, in order to clean up the stack, GETWCRE rust
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execute an interrupt return (assemdbly instruction:IRET® {f
entry was via the hardware preempt handler (i.e., P€ set).
This 1imstruction will pop the three items off the stack and
return to the appropriate location. If the interrupt returrn
flag, Re¢, is off, @ normal return is executed.

During normal operation, SWAP-DER manipulates
process stacks to save the old VP state and load the new VP

state. This action proceeds as fcllows (figure 13):

1. The Flag Control Word (FCW), the Stacx Pointer (R15)
and the preempt return flag (R@i are saved in the cld
VF’s kernel stack.

2. The DER (R14) is loaded with the new VP’s LER. This
permits access to the address space of the new process.

3. The Flag Control Word (FCW), the Stack Pointer (215)
and the Interrupt Return Flag (R@), are loaded into the
appropriate CPU reeisters.

is set, GETWORK will execute ar

4, BRC is tested. If it
If it is off, a normal return occurs.

interrupt retura.
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Kernel Stack Segments

0ld VP Stack New VP Stack E
: : i
RET ADDR CPU RFT ADDR SF :
: ~, | rres| T 3 — |
N ’// : e SE :
SF: R15 SP: R15 :
IRET:FQ ‘<\ IRET:R¢
FCW FCW
, EEADER EEADER
f FIGURE 13 - .i
a

By constructing GETWORK 1n this way., Yoth system
initialization and normal operations can be handled 1in the

same way. A high level GETWORK algorithm is giver in figure

14.

3. Yirtual Processor Instruction Set

-~ e

The heart of the SASS scheduline mechanism 1is the
internal procedure, GETWORK. It provides a powerful internal
primitive for wuse by the virtual processors and greatly
simplifies the design of the virtual processor instruction
set, Virtual processor instructions perform three types of

functions: multiprogramming, process management and virtual

interrupts.




GETWORK Procedure (IER = R14)
Beein
Reset Interrupt Return Flag (Re)

Skip hardware preempt handler

X : Eardware Preempt Entry:

3 Set DER

it Save CPU registers

¥ Save supervisor stack pointer
' Set Interrupt Return Flag (RO)

! Get first ready VP

Do while not Select
If Idle flag is set then
if Preempt flag is set then
select
else
2et next ready VP
, end if
1 else
select
end if
end do

SWAP_DER:

Save 0ld VP reegisters in stack seement
Swap dbr (R14)

Load new VP registers in stack seesment

If Interrupt Return Flag is set then
unlocx VPT

simulate GATEKXZEPER exit:

Call TEST_VFREEMPT

Restore supervvisor registers
Restore supervvisor stack pointer

Execute Interrupt Return (IRET)
end {f

Bxecute normal return

end GETWCRK

Figure 14
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SIGNAL and WAIT provide synchronization arnd

communication between virtual ©processors. They nmultiplex

virtval processors on & CPU to provide multiprogramming.
This implementation used a version of the sienal and wait
algorithms proposed ty Saltzer [12). Irn the SASS design each
CPU {s oprovided with a unique (fixed) set of virtual
processors. The interaction among virtual processors 1ic a
result of multiprogramming them cn the real precessor. Only
one virtual processor is able to access the VPT at a time
because of the wuse of the VET IOCK (SPIN_LOCK) tc provice
mutual exclusion. Therefore race and deadlock conditions
will not develop and the signal pending switcn used ty

Saltzer is not necessary.

This implementation also included message passing

mechamism not provided by Saltzer. The message slotis

available for wuse by virtual oprocessors are initially
contained in a queue pointed to by FREE-LIST. When a message

i< <ent from one VP to another, a message slot is removed

from the free 1list and placed in a TIIFO messaese queue
belonging to the VP receiving the message. The head of each
VP’s messaee queue 1S pointed to by MSG-LIST. Fach messaze
slot contains a message, tae ID of the sender, and a pointer
to the next message in the 1list (either the free 1list or the

VP message list.
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IDLE and SWAP_VDBR provide the Traffic Corctroller

with a means of scheduling processes on tnhe running VF.

SET_VPREEMPT and TIZST_VPREEMPT install a virtual
interrupt mechanism in each virtual processor. "hen the
Traffic Controller determines that a virtual prccessor
should #ive up its process tecause a higher priority process
is now ready, it sets the PREEMPT flag in that VP. Ther,
even if an idle process is loaded on the VP, it will te
scheduled and will be loaded with the first ready process.
Test_VPreempt 1s a virtual interrupt unmasking mecharism
which forces a process to examine the preempt flag each time
it exists from the kernel.

a. Vait

WAIT provides a means for a virtual processor to
move itself from the running state to the waiting state when
it has no more work to do. It is invoXed only for system
events that are always of short duration. It is supported by
three internal Procedures.

SPIN_LOCK enables the running VP to gain control
of the Virtual Processor Table. This procedure 1is only
necessary in a multiprocessor environment. The runnine VP
will have to wéit only a short amount of time to &gaic

control of the VFT. SFIN_LOCK returrs when the VP has locked

the VPT.
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GETWORK loads the first eliegidle virtual
processor of the ready list on the real processor. ZEefore
this procedure 1is invoked, the runnine VP is placed in the
ready state. Both ready and runaing YP’s are members of &
FIFO queue. GETWORK selects the first VP in this ready list.
loads it on the CPU, and places it in the runring state.
When GETWORK returns, the first VP of the queue will always
be running and the second will bde the first VF in the ready
queue.

GET_FIRST_MESSAGE returns the first message of
the message 1ist (also managed as a FIFO queue) associated

with the running VP. The action taxen tv 44I™ is &5 follows:
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WAIT Procedure (Returns: Msg, Sender_IT)

Begin
Lock VPT (call SFPIN_LOCK)
If message list empty (i.e., no work) Then
Move VP from Runrine to Waiting state
Schedule first eligible Ready VP (call GITWCRE)
end 1if
(NOTE: process suspended here until
it receives a signal and i<
selected bu GETWORK.)

Get first message from message list
(call GET_FIRST_MS3G)

Unlock VPT

Return

end WAIT

If the running virtual processor calls WAIT and
there is a messape in its messaege list (placed there when
another VP signaled it) it will get the message and continue
to run., If the messare list is empty it will place itself ir
the wait state, schedule the first ready virtuval processor,
and move it to the runnirg state. The virtual vrocessor will
remain in the waiting state until another running VP sends
it a messase (via SIGNAL). It will then move to the ready
list. Finally it will ©be selected by GETWCRE, the next
instructions of WAIT will be executed, it will receive the
message for which it was waiting, and it will return to the

caller.
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b. Slienal
Messages are passed tetween virtual oprocessors

by the instructior, SIGNAL, which uses four i{internal 1

[ procedures. SPIN_LCCK, ENTER_MSG_LIST, MAXT_2EALT, and ;

}§ GETWORK,
j; SPIN_LOCK, as explained above insures that only E
ore virtual processor has control of the 7Virtual Processor
Table at a time.

ENTER_MSG_LIST manages & FIFO messege queue for
each virtual Processor and for free messares. ThiS queue 1is
of fired maximum length Ddecause of the implementation
decision tc restrict the use of SIGMAL. A rurnirg 7F can
send no more than ore message (SIGNAL) bYefore it receives a
i reply (i.e., WAIT s for a message). Therefore if there are N

virtval processors per real processors, the message queue
i length, L, is:
: L =N-1
MAKE_READY me .ges the virtual processor ready
queue. If a message is sent to a VP in the waitine .state.
MAKE_READY wakes it up (it places it in the ready state) and
‘ enters it in the ready 1list. If & runnlng VP sigrnals a
] waiting VP of higher priority, it will place itself tack in
' the ready state and the higher priority VP will bde selected.

The action taken dy signal is as follows:
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SIGNAL Procedure (Message, Testination_VF)
begir

Lock VET (call SPIN_LOCK)

Send message (call ENTER_MSG_LIST)

If siznaled VP is waltiane Then

Wake it up and make it ready

{cali MAXE_READY)

end if
Fut running VP in ready state.

Schedule first elzgible ready VP
(call GETWORK)

Urlock VPT
Retura (Success_code)

Ind SIGNAL

c. SWAF_VIDB?

SWAP_VILBF contains the same processor switchiae
mechanism used in SWAP_DBR, tut applies it to a virtual
processor rather than a real processor. Switchice is quite
simple in this virtual environment becauses doth processor
execution point and address space are defined by the
Descriptor Base Register. SWAP_VI3R 1is invokxed tv the
Traffic Controller to 1load a new process o0& a virtual
processor in support of level-2 scheduling. It uses GETWORK
to control the associated level-l scheduline. The action

taken by SWAP_VDER is:




SWAF_VDBR Procedure (New_DER)
Fegin
Lock VET (call SPIN_IOCK)
Load running VP with New_LZER
Flace running VP {n ready state

Schedule first eligidle ready VP
(call GETWORK)

Unlock VPT
Return

End SWAP_VDER

In this implementation one restriction is placed
upcn the use of this instruction. If a virtual crocessor’s

message list contains at least one message, it can rot give

up its current DER. This probdlem {s aveided as the natural
recult of using SIGNAL and WAIT only for system events, ané
“"masking” preempts within tne kermel. If this were
permitted, the messages would lose their context. (The
messages in a VP_MSG_LIST are actually 1intended for thae
process loaded on the VP.)

d. IDLE

The IDLE 4instruction loads the Idle TEIP on the
?, running virtual processor. Only virtual oprocessors in

contention for process Scheduling will te loaded bdy this

|
{
g ) instruction., (The Traffic
3
§




Controller 1is rot even aware of virtual prccessors

permanently bound to kernel processes.)

ICIE hes the same scheduling effect as
SWAP_VDBR, dbut it also sets the IDLE_FILAG on the scheduled
VP. The distincticn is made betweer the Two cases decause,
although the Traffic Controller must schedule an Idle
process on the VP if there are no other ready processes, the
Inper Traffic Controller does not wish to schedule an Idle
VP 1¢ there is an alternative. This would Ye a waste of
physical processor resources. The setting of the IDLE_FLAG
by the Traffic Controller aids the Inner Traffic Centroller
in makine this scheduling decision. Logically, there is an
idle process for each VP; actually the same address space
(DBR) is used for all idle processes for the same CPU, since
only one will run at & time. As previously exgplaired,
virtual processors 1loaded by this instruction will te
selected by GETWORK only to give the Idle process away fcr a
new process in response to a virtval preempt interrupt. The

action of IDLE is:
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IDLY Procedure

Beein

I lock VPT (call SPIN_LOCE)
|

|

|

load running VP with Idle DZER

et A

! Set VP’s ILLE_FLAG
! Place running VP in ready state

Schedule first elgible readvy VP
(call GETWORK) ]

Unlock VPT
Return

End IDLE

e. SET_VPREEMPT
SET_VPREZEMPT sets the preempt interrupt flag on

R v

a specified virtual processor. This forces the virtual
processor into level-l scheduling contention, even if it is
i loaded with an Idle process. The instruction retrieves an

idle virtual processor in the same way a hardware preempt

. w e

» retrieves an 1idle CPU by forcine the VP to be selected by

GETWORK. The only difference between the two cases 1is the
entry point used in GFTWORK. The action of SET_VFREEMPT is:

H o %
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SET_VPREEMFT Procedure (VP!

Begin

Set VP’s PREEMPT flag

If VP belones to another CPU Then
send hardware interrupt

end 1if

Feturn

End SET_VPREEMPT

Since the actiocn 1is a safe sequence., LO
deadlocks or race conditions will arise and no 1lock Iis
required on the VFT.

f. TEST_VPREEMPT

Within the kernel of a multiprocessor system all
process interrupts (which excludes system I[/0 interrupts)
are masked. If process interaction results in a virtual
preempt teing sent to the running virtval processor by
another CPU, it will not bYbe handled since ETWCRY ras
already bYeen 1invoked. TEST_VFREEMPT provides a wvirtual
preempt interrupt unmasking mechanism.

TEST_VPREEMPT mimics the action of & physical
CPJ when interrupts are unmasked. It forces the process
execution point back down into the kernel each time the
process attempts to leave the kernel domain, where the

preempt flag of the running VP is examined. If the flag 1is




off, TEST_VPREEMPT returns and the execution point exits
through the Gatekeeper into the supervisor domain of the

process address space as descrided adbove. However, if the

PREEMPT flar is on, the TEST_VPRETEMPT executes & virtuel

e TR,

interrupt handler 1located in the Traffic Controller. This

jump from the Inper Traffic Controller to the Traffic

Controller (TC_PREZEMPT_FANDLER) 1is a close parallel to the
E; action of a CPU7 in response to & hardware interrupt, thkat is
! a jurp to an {interrupt handler., The Traffic Cortroller
Preempt Fandler forces level-2 and level-1 scheduling to

proceed in the normal manner. The preempt handler forces the

g Traffic Controller to examine the APT and to applv the ’

o level=2 scheduling algorithm, TC _GETVORK. 1If the AFT has
' been changed since the last invocation of this scheduvler, it
will be reflected in the scheduling selections. ZIventually,
when the running VP’s preempt flag is tested and found to te
reset, TEST_VPREEMPT will return to the Gatekeeper where the
process execution point will finally make & normal exit into

its supervisor domain. TEST VFRZEMPT performs the following

action:
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TEST_VFREEMFT Procedure

Begin

Do while running VP”s PREEMPT flae is set

Peset PREEVMPT flag

Call preempt handler
(call TC_PREEMPT_HANDLER)
Tnd do
Return

End TEST_VEREEMET

C. TRAFFIC CONTROLLFR

The Traffic Controller runs in a virtual envirourent

created by the Inner Traffic Controller. It sees & set of

e Sk i s

running virtual processor instructions: SWAF_VIER, ICLE,

SET_VPREE¥PT, and FRUNNING_VP, and provides & scheduler,

TC_GETWORK, which multivlexes processes on virtual

lso

[e1)

processors in response to process interaction. It

creates a level-2 instruction set: ADVANCE, AWJAIT, and 1

i e ey

PROCESS_CLASS, which 1s available for use by higher levels !
of the design. The Traffic Controller uses a global data

base, the ACTIVE PROCESS TABLE to support its operation.

1. Active Frocess Table (APT)

The Active Process Tatle is a system-wide kernel

1 database containing entries for each supervvisor process in

SASS (Figure 15). It is indexed by active process IT.
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_? Actlive Process Table
LOCK

m—

i RGNNING_LIST PROCESS_ID

VP_ID
\

K. s i
SADY_LIST_HEAD

DER ACCESS _CLASS , STATE NEXT_AP , SVENTCCUNT

PANTIZ
INSTANCE
COUNT
AP
Index 3

R
-

Figure 15

The structure of the APT <closely parallels that of the

Virtual ~Processor Tabdle. It contains a LOCK to support the

implementation of a mutual exclusion mecharism, a
RUNNING_LIST, and a READY_LISf_HEAD. The Traffic Centroller
is onlv concerned with virtual processors that can te loa&ded
with supervisor processes. Since two VP’s are permapently
bound to kernel processes (the Memory Manager and the Idle
Process), they cannot bYe in contention for level-=2
scheduline; the Traffic Controller is unaware of their j
existencej; since there are a gaumder of availadble virtual

processors, the RUNNING_LIST was implemented as an array

indexed by VP_ID. The READY_LIST_HEAD points to a FIFO queue
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that includes bdoth running and ready processes. The rurning
processes will be at the top of the ready list.
Because of their completely static nature, idle

processes require no entries in the APT. Logically, there {s

o} }

an idle process at the end of the ready 1list for eachk 7V

availadble to the Traffic Controller. If the ready list |

w

empty, TC_GETYORK loads one of these 'virtual®  idle
processes by calling IDLE, and enters a reserved identifier,
#I1DLE, in the appropriate RUNNING_LIST entry. TRhis
identifier is the only data concerning idle processes that
is contained in the APT. Idle process scheduling
considerations are moved down to level-1, btecause the Inner
Traffic Controller knows adout physical processcrs, and can
optimize CPU use by scheduling 1idle processes only Wwhern
there is nething else to do.

The subject access class, S_CLASS, provides each
process with a label that is required by level~2 modules to
enforce, the SASS non-discretionary security policy.

2. level-2 Scheduling

Above the Traffic Controller, SASS appears as 3
collection of processes in one of the three states: rurning,
ready, or blocked. Running and ready states are analosous to
the corresponding virtual processor states of the Inner

Traffic Controller. Eowever, because of the use of

50
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eventcount synchronization mechanisms bty the Traffic

3§ Controller, the blocked state has a slightly different

%i connotation than the VP waiting state.

| Blocked processes are waiting for the occurrence of
4 non-syster event, e.g., the event occurrence ray bde
slgnalled from the supervisor domain. When & specific event
happens, all of the bdlocked processes that were awaitirce
that event are awakened and placed in the ready state. This
broadcast feature of event! occurrence is more powerful than
the messapge passing mechanism of SIGNAL, which must te

‘ directed at a single recipient.

Just as SIGNAL and WAIT provide virtual processor
multiplixine in level-1, the eventcount functions, ALVANCE
and AWAIT, con}rol process scheduling in level-2,.

a. TC_GEITWORK

level=2 schedvling is impiemented in the
internal Traffic Controller procedure, TC_GETWORK. This
procedure 1is invoked by eventcount functions when a process
state change may have occurred. It 1loads the first ready
process on the currently scheduled VP (i.e., the virtual
processor that has YbYeen scheduled at level-1 anéd is

currently executing on the CPU).

T m—— v r— o ’ v " L [




TC_GETWORK Procedure

Feein
VP_ID := RUNNING_VP
Do while not end of ready list
if process is running then
get next ready process
else
RONNING_LIST [VP_IT] := PROCESS_IT
Process state := running
SWAP_VDER

end i¥f
end do

If end of runnine 1ist (no ready processes) Thken
RUNNING_LIST := #IDLE )
IDLE
end if
Feturn 4

Tnd TC_GETWORK

A source 1listing of TC_GETWORK is contaired in

Appendix E.
b. TC_PREEMPT_EANDLER

Preempt interrupts are masked while a process is
executing in the kernel domain. As the process leaves tne
kernel, the gatekeeper unmasks this virtual irnterrupt ty
invoking TEST_V"REEMPT. This inmstruction tests the scheduled
VP’s PREEMPT flag. If this flag is off, the process retursas
to the Gatekeeper and exits from the kxernel; tut if the flag

is set, TEST_VPREEMPT calls the Traffic Controller’s virtual

preempt interrupt handler, TC_PREEMPT_EANDLER. This handler




invokes TC_GETWORK, which re-evaluates 1level-2 <cheduling.
Eventually, when the schedulers have completed their
functions, the handler will return control to the preempted
process, which will return to te Gatekeeper for a normal
exit. This sequence of events closely parallels the action
of a hardware interrupt, but in the environment of a virtual
processor rather than a CPU. The wvirtualization of
interrupts provides the ability for one virtual processor to
interrupt execution of another that may, or may not, be
running on a CPU at that time. This is provided without
disrﬁptine the logsical structure of the system. This
capability is particularly useful in a multiprocessor
environment where the target virtual oprocessor iy te
executing on another CPU, 3ecause these interrupts will te
virtualized, the operating system will retain control of the
system. The action of the TC_PREEMPT_HANDLER is descrited in
the procedure below. A source 1listine is coxntained in

Appendix B.
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TC_PREEMPT_HANDLER Procedure
RBegin
Call WAIT_LOCK
VYP_ID := RUNNING_VP
Process_ID := RUNNING LIST (VF_ID]
If process is not idle Then
Process state := ready
end 1if
Call TC_GETWORK
Call WAIT_UNLOCK
STURN
End TC_PREEMPT_HANDLZER

WAIT_LOCK and WAIT_UNLOCK provide arn exclusion
mechanism which prevents simultaneous multiple use of the
APT in a multiprocessor configuration. This mechanism
invokes WAIT and SIGNAL of the Inmer Traffic Controller.

3. Eventcounts

An eventcount 1is a non-decreasing inteeer
associated with a globdal object called an event [11]. The
Event Manager, a level-3 module, controls access to event
data when required and provides the Traffic Controller with
a HANDLE, an INSTANCE, and a COUNT. The values for all
eventcounts (and sequencers) are maintained at the Mermory
Manager level and are accessed by calls to the Merory

Manager. The HANDLE provides the traffic controller with an

E4




event ID, associated with a particular segment. INSTANCE s

a more specific definition of the event. For example, each
SASS supervisor segment has two eventcounts associated with
it, a INSTANCE_1 and a INSTANCE_2, that the supervisor uses
keep track of read and write access to the seement [2].
Eventcounts provide information <concerning system-wide
events. They are manipulated by the Traffic Controller
functions ADVANCE and AWAIT and by the Memory Manager
functions, READ and TICXZET. A proposed high level design for
ADVANCE and AWAIT is provided in Apperndix C.
a. Advance

ATVANCE signals the occurrence of an event
(e.g., a read access to a particular supervisor segment).
The value of the eventcount {s the number of ALVANCE
operations that have been performed on it, When an event is
advanced, the fact must be ©broadcast to all tlocked
processes awalting it and the process must be awakened and
placed on the ready 1list. Some of the newly awakened
processes may have a higher priority than some of the
running processes. In this case a virtual preerpt,

SET_VPREEMPT (VP_ID), must be sent to the virtual processors

loaded with these lower priority processes.




b. Await
When a process desired to block itself until
a particular event occurs, it invokes AWAIT. This procedure
returns to the calline process when a specified eventcount
is reached. Its function is similar to WAIT.
c. Read
REAT returns the current value of the
eventcount., This is an Event Manager (level three) function.
This module calls the Memory Maneger module to ottain the
eventcount value.
d. Ticket
TICKET provides & complete time-ordering of
possibly concurrent events. It uses a rnon-decreasing
integer, called a sequencer, which is &also associated with
each supervisor segment. As with RZAD, this 1is an ZEvent
Manager function that calls the Memory Man&ager to access the
sequencer value. Each {invocation of TICXET increments the
value of the sequencer and returns it to the caller. Two
different uses of ticket will return two different values,

corresponding to the order in which the calls were made.

D. SYSTEM INITIALIZATION

Eecause the Imnner Traffic Controller’s scheduler,

GETWORK, can accommodate both normal calls and hardware

£6




interrupt jumps, the probdlem of system initialization is not

difficult.

when SASS is first started at level-1, the Idle VP is
running and the memory manager VP, which has the highest
priority, is the first ready virtual preccessor in the ready
list. All VP’s availadble to the Traffic Controller for
level-2 schedling are ready. Their IDLE_FLAG's ard PREEMFT
flags are set.

At level-2, all VP’s are loaded with idle processes and
all supervisor processes are ready.

The kernel stack segmeant of each process is initialized
to appear as if it had been saved by a hardware Preempt

interrupt (Figure 16).




Initialized Stack

Stack Segment
SP ~~———p| sup sStack ptr |

int ID

sup FCW

—9 process entry
stack base

ker stack ptr
IRET FLAG
i
ker FCW

header

Figure 16

All CPU registers and the supervisor stack polinter are
stored on the stack. R15 is reserved as the kernel stack
point; R14 contains the DBR. All other registers can be used
to pass initial parameters to the process. The order in
vhich these registers appear on the stack supports the Z/ASM
block-move imstructions.

The status block contains the current value of the stack
pointer, RiS, and the preempt interrupt return flag. This

flag is set to indicate that the process has deen saved by a

8e




preempt interrupt. The first three items on the stack: the
process entry point, the initial process flag control word,
and an {irnterrupt {ndentifier, are also iritialized to
support the action of a hardware ianterrupt.

To start-up the system, Ri4 (the DBR) is set to the Idle
process DBR} the CPU Program counter is assigned the
PREEMPT_ENTRY point in GETWORK; the CPU Flag Control Word
(FCW) 1s 1initialized for the kernel domain; and the CFU is
started. Fecause the Idle_VP is the lowest priority. YP in
the system, it will place itself dback in the ready state and
move the Memory Manager 1in the rurnning state. The Memory
Manager will execute an interrupt retura Ddecause the
interrupt return flag was set by system initialization.
There will be no Work for this kxernel process so it will
call WAIT to place 1itself in the waiting state. The next
ready VP is i14ling, but since it’s IDLE_FIAG and PREEMPT
flag are set, GETWORK will select it. It too will execute an
fnterrupt return, but Ybecause its PREEMPT flag is set, it
will call TC_PREEMPT_HANDLER. This will cause the first
ready process to be scheduled. Each time a supervisor
process bdblocks itself, the next idle VP will be selected and
the sequence will bde repeated.

The action described above 1is im accord with normal

operation of the system. The only wunique £features of




initialization are the entry point (PIEEMPT-ENTRY: in
GETWORK) and the values in the initialized kernel stack.

The implementation presented in this thesis has been run
on a Z20200 developvmental module. System initialization has
been tested and executes correctly. At the current level of
implementation, no process multiplexing function {is
available. There i{s no provision for unlocking the APT after
an initialized process has been loaded as & result, a call
to the Traffic Centorller (viz., ADVANCE or AWAIT). In a
process multiplexed environment this would cause a system
deadlock. Once the process left the kernel domair with a
locked APT, no process would bde able to wunlock 1it. The
Traffic Controller must handle this syster initialization

prodler.
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V. CONCLUSION

The implementation presented in this thesis created a
security kerrel monitor that runs on the Z£¢«€ Tevelopmental
Module. This monitor supports multiprogramming and gprccess
management in a distridbuted operatinez system. The process
executes in a multiple virtual processcr environrert which
is independent . of the CPU configuration.

This monitor was designed specifically to support the
Secure Archival Storase System (SASS) [1, 2, 3). Eowever,
the implementation is based on a family of Operating Systems
(4] desiened with a primary goal of providire multilevel
security of information. Althoughk the moaitor currently runs
on & sinegle microprocessor system, the implementaticn fully

cupports a multiprocessor design.

A. RZCOMMENDATIONS

Pecause the Zilog MMU is not yet availatle for the Z&€:c@
Levelopmental Module, it was necesary to simulate the
segmentation hardware. As explained in Chapter IV, this was
accomplished by reserving a CPU register, Rl4, as a
Descriptor Base Register (DER) to oprovide a link to the
loaded addresss space., When the MMU becemes availadle, this

simulation must bve removed. This can te dore in two steps,

Al
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evte 0 1o

First, the addressing format must be trarslated to the
sezmented form. This requires no system redesien.

Second, the switching mechanism most be modified to
accorodated to use the MMU., This can be done by modifyine
the SWAP_DBR portion of GETWORK to multiplex the MMU_IMAGE
onto the MMU hardware and this can be accomplished by

changing adtout & dozen lines of the existing code.

B. TFOILLOW ON WORK

Although the monitor appears to execute correctly, it
has not been rigorously tested. Before higher levels of the
system are added, it is essential that the monitor te highly
reliahle. Therefcre a formal test and evaluation plan shceculd
te developed.

ir automated system generaticn and initialization
mechanism 1s also required if the monitor to be is a useful
tool in the development of higher levels of the design.

Once the monitor has been proven reliable and can be
loaded easily, work on the 1implementation of the Vemory
Manager kernel process and the remainder of the kernel can

continue.
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PERPI e i " re——ry

APPENDIX C

ADVANCE Procedure (HANDLE, INSTANCE)
Begin
Call WAIT_LOCK (APT)
! wake up !
PROCESS := EVENT_LIST_EEAD (HANDLE, INSTANCE)
COUNT := MM_ADVANCE_COUNT (HANDLE, INSTANCE)
! make ready !
Do while not end of READY_LIST
If PROCESS.COUNT <= COUNT THEN
Call MAKE_READY
end 1f
end do
! {nitialize preempt array !
Do for VP_ID = 1 TO #NR_VP

RUNNING_LIST [VP_ID].PRESMPT s= #TRUE
end do

! find preempt candidates !
CANDIDATES := ¢
PROCESS := READY_LIST_HEAD
Do (for VP_ID := 1 to #NR_VP) and not end READY_LIST
If PROCESS = #RUNNING THEN
e%gzNING_LIST (YP_ID} .PREEMPT := #FALSE

CANDIDATE := CANDIDATE +1
end ¢

Get next ready process
end do

134
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! preempt candidates !

Do for VP_ID := 1 to CANDIDATES
If RUNNING_VP [VP_ID] = #TRUE Then
Call SET_VPREEMPT (VP_ID)

: end if

i end do

s S g i

Call WAIT_UNLOCK (APT)
Return

End ADVANCE

v A e et

s e et
-
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| AWAIT Procedure (HANDLE, INSTANCE, COUNT) é
] Begin j
Call WAIT_LOCK (APT)
VP_ID := RUNNING_VP ;

PROCESS := RUNNING_LIST ([VP_1D] -
CURRENT _COUNT := MM_READ_COUNT (EANDLE, INSTANCE)

If CURRENT_COUNT < COUNT Then

Call THREAD_BLOCKED_LIST (HANDLE, INSTANCE, PROCESS)
PROCESS .HANDLE := HANDLE

PROCESS.INSTANCE := INSTANCE

PROCESS.COUNT := COUNT

PROCESS.STATE := #BLOCKED

P iyl bict

: Call TC_GETWORK
end if

Return

End AWAIT
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